Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames
نویسندگان
چکیده
A Photon Monte Carlo method combined with a composition PDF method is employed to model radiative heat transfer in combustion applications. Turbulence–radiation interactions (TRIs) can be fully taken into account using the proposed method. Sandia’s Flame D and artificial flames derived from it are simulated and good agreement with experimental data is found. The effects of different TRI components are investigated. It is shown that, to predict the radiation field accurately, emission TRI must be taken into account, while, as expected, absorption TRI is negligible in the considered nonsooting methane/air jet flames if the total radiation quantities are concerned, but non-negligible for evaluation of local quantities. The influence of radiation on the turbulent flow field is also discussed. r 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
A Pdf/photon Monte Carlo Method for Radiative Heat Transfer in Turbulent Flames
Thermal radiation plays a dominant role in heat transfer for most combustion systems. Accurate predictions of radiative heat transfer are essential for the correct determination of flame temperature, flame structure, and pollutant emissions in combustion simulations. In turbulent flames, transported probability density function (PDF) methods provide a reliable treatment of nonlinear processes s...
متن کاملComposition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames
0010-2180/$ see front matter 2009 The Combust doi:10.1016/j.combustflame.2009.11.009 * Corresponding author. Present address: CFD Rese AL 35805, United States. Fax: +1 256 726 4806. E-mail addresses: [email protected] (R.S. Mehta), dch [email protected] (M.F. Modest). 1 Present address: Department of Mechanical Engine Merced, CA 95348, United States. A comprehensive model for luminous turbulent ...
متن کاملModeling of a Turbulent Ethylene/air Jet Flame Using Hybrid Finite Volume/monte Carlo Methods
Detailed modeling of an experimental ethylene/air jet flame is undertaken using the composition PDF method for gas-phase kinetics coupled with detailed models for soot formation and radiation from the flames. The gas-phase kinetics is modeled using a reduced mechanism for ethylene consisting of 33 species and 205 elementary reactions. The soot formation is modeled using the method of moments wi...
متن کاملRadiation and Nitric Oxide Formation in Turbulent Non-premixed Jet Flames
Radiative heat transfer has a significant effect on nitric oxide (NO) formation in turbulent non-premixed flames. Consequently, predictive models of turbulent non-premixed flames must include an accurate radiation submodel. To investigate the importance of radiation submodels in modeling NO formation, multiscalar measurements of temperature and species were coupled with radiation measurements i...
متن کاملInfluence of Thermal Radiation Models on Prediction of Reactive Swirling Methane/Air Flame in a Model Gas Turbine Combustor
A numerical simulation of reactive swirling methane/air non-premixed flame in a new three-dimensional model combustion chamber is carried out to assess the performance of two thermal radiation models, namely, the Discrete Transfer Radiation Model and the P-1 Model. A Finite Volume staggered grid approach is employed to solve the governing equations.The second-order upwind scheme is applied for...
متن کامل